Python Training Curriculum
Python Training Course Content
Introduction to Python
What is Python Language and features, Why Python and why it is different from other languages, Installation of Python, Anaconda Python distribution for Windows, Mac, Linux. Run a sample python script, working with Pyhton IDE’s. Running basic python commands – Data types, Variables,Keywords,etc
Hands-on Exercise – Install Anaconda Python distribution for your OS (Windows/Linux/Mac)
Basic constructs of Python language
Indentation(Tabs and Spaces) and Code Comments (Pound # character); Variables and Names; Built-in Data Types in Python – Numeric: int, float, complex – Containers: list, tuple, set, dict – Text Sequence: Str (String) – Others: Modules, Classes, Instances, Exceptions, Null Object, Ellipsis Object – Constants: False, True, None, NotImplemented, Ellipsis, __debug__; Basic Operators: Arithmetic, Comparison, Assignment, Logical, Bitwise, Membership, Indentity; Slicing and The Slice Operator [n:m]; Control and Loop Statements: if, for, while, range(), break, continue, else;
Hands-on Exercise – Write your first Python program Write a Python Function (with and without parameters) Use Lambda expression Write a class, create a member function and a variable, Create an object Write a for loop to print all odd numbers
Wrting Object Oriented Program in Python and connecting with Database
Classes – classes and objects, access modifiers, instance and class members OOPS paradigm – Inheritance, Polymorphism and Encapsulation in Python. Functions: Parameters and Return Types; Lambda Expressions, Making connection with Database for pulling data.
File Handling, Exception Handling in Python
Open a File, Read from a File, Write into a File; Resetting the current position in a File; The Pickle (Serialize and Deserialize Python Objects); The Shelve (Overcome the limitation of Pickle); What is an Exception; Raising an Exception; Catching an Exception;
Hands-on Exercise – Open a text file and read the contents, Write a new line in the opened file, Use pickle to serialize a python object, deserialize the object, Raise an exception and catch it
Mathematical Computing with Python (NumPy)
Arrays and Matrices, ND-array object, Array indexing, Datatypes, Array math Broadcasting, Std Deviation, Conditional Prob, Covariance and Correlation.
Hands-on Exercise – Import numpy module, Create an array using ND-array, Calculate std deviation on an array of numbers, Calculate correlation between two variables
Scientific Computing with Python (SciPy)
Builds on top of NumPy, SciPy and its characteristics, subpackages: cluster, fftpack, linalg, signal, integrate, optimize, stats; Bayes Theorem using SciPy
Hands-on Exercise – Import SciPy, Apply Bayes theorem using SciPy on the given dataset
Data Visualization (Matplotlib)
Plotting Grapsh and Charts (Line, Pie, Bar, Scatter, Histogram, 3-D); Subplots; The Matplotlib API
Hands-on Exercise – Plot Line, Pie, Scatter, Histogram and other charts using Matplotlib
Data Analysis and Machine Learning (Pandas) OR Data Manipulation with Python
Dataframes, NumPy array to a dataframe; Import Data (csv, json, excel, sql database); Data operations: View, Select, Filter, Sort, Groupby, Cleaning, Join/Combine, Handling Missing Values; Introduction to Machine Learning(ML); Linear Regression; Time Series
Hands-on Exercise – Import Pandas, Use it to import data from a json file,,Select records by a group and apply filter on top of that, View the records, Perform Linear Regression analysis, Create a Time Series
Natural Language Processing, Machine Learning (Scikit-Learn)
Introduction to Natural Language Processing (NLP); NLP approach for Text Data; Environment Setup (Jupyter Notebook); Sentence Analysis; ML Algorithms in Scikit-Learn; What is Bag of Words Model; Feature Extraction from Text; Model Training; Search Grid; Multiple Parameters; Build a Pipeline
Hands-on Exercise – Setup Jupyter Notebook environment, Load a dataset in Jupyter, Use algorithm in Scikit-Learn package to perform ML techniques, Train a model Create a search grid
Web Scraping for Data Science
What is Web Scraping; Web Scraping Libraries (Beautifulsoup, Scrapy); Installation of Beautifulsoup; Install lxml Python Parser; Making a Soup Object using an input html; Navigating Py Objects in the Soup Tree; Searching the Tree; Output Print; Parsing Full or Partial
Hands-on Exercise – Install Beautifulsoup and lxml Python parser, Make a Soup object using an input html file, Navigate Py objects in the soup tree, Search tree, Print output
Python on Hadoop
Understanding Hadoop and its various components; Hadoop ecosystem and Hadoop common; HDFS and MapReduce Architecture; Python scripting for MapReduce Jobs on Hadoop framework
Hands-on Exercise – Write a basic MapReduce Job in Python and connect with Hadoop Framework to perform the task
Writing Spark code using Python
What is Spark,understanding RDDs, Spark Libs, writing Spark code using python,Spark Machine Libraries Mlib, Regression, Classification and Clustering using Spark MLlib
Hands-on Exercise – Implement sandbox, Run a python code in sandbox, Work with HDFS file system from sandbox